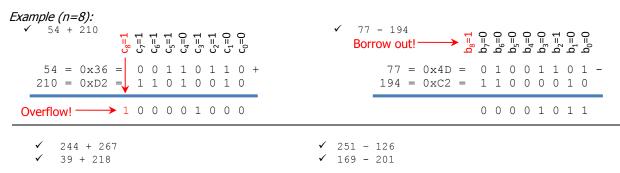
Homework 2

(Due date: February 9th @ 5:30 pm)
Presentation and clarity are very important!


PROBLEM 1 (10 PTS)

Complete the following table. Use the fewest number of bits in each case.
 You MUST show your conversion procedure. No procedure ≡ zero points.

REPRESENTATION						
Decimal Sign-and-magnitude 1's complement 2's complement						
-129						
			1010010			
		010011010				
			1000000			
	1001010					

PROBLEM 2 (16 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts)

b) Perform the following operations, where numbers are represented in 2's complement arithmetic: (10 pts)

$$\checkmark$$
 -70 + 63 \checkmark 490 + 47 \checkmark -257 + 256 \checkmark -127 - 183

- For each case:
 - ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 - ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands.
 - ✓ Determine whether there is overflow by:
 - i. Using c_n , c_{n-1} (carries).
 - ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
 - ✓ If there is overflow and we want to avoid it, what is the minimum number of bits required to represent both the summands and the result?

PROBLEM 3 (27 PTS)

a) Calculate the result of the additions and subtractions for the following signed fixed-point numbers. Use the minimum number of bits for both operands and result so that overflow is avoided. (6 pts.)

1

0.1110 +	11.11101 -	1.0001 +	0.00101 -
1.010111	0.001101	1.001001	101.01101

b) Calculate the result of the multiplication of the following signed fixed-point numbers: (9 pts.)

10.0101 ×	101.1101 ×	01.101 ×
0.10111	110.011	100.01011

c) Calculate the division result (with x = 4 fractional bits) for the following signed fixed-point numbers: (12 pts.)

10.0101 ÷	01.0111 ÷	01.01110 ÷	1.1101 ÷
01.011	01.11	1.011	10.001

PROBLEM 4 (10 PTS)

- a) We want to represent numbers between -128.7 and 179. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0005? (3 pts.)
- b) We want to represent numbers between -255.9 and 234.5. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0025? (3 pts.)
- c) Represent these numbers in Fixed Point Arithmetic (signed numbers). For each case, select the minimum number of bits

 -127.3125

 232.21875

PROBLEM 5 (9 PTS)

a) Complete the table for the following fixed point formats (signed numbers):

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
7	5				
12	4				
17	7				

b) Complete the table for the following floating point formats (which resemble the IEEE-754 standard) with 16, 24, 48 bits. Only consider ordinary numbers.

Exponent bits (E)	Significant bits (p)	Min	Max	Range of e	Range of significand
6	9				
7	16				
10	37				

PROBLEM 6 (28 PTS)

a) Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.

	Single (32 bits)			Double (64 bits)		
✓	F8000378	✓ 7FFCDEAC	✓	8009DECADE080000	✓	7FF0000000000000
✓	801DECAF	✓ B300D959	✓	FFFDECAFC0FFEE90	✓	FACADEDECADE1990

b) Calculate the result of the following operations with 32-bit floating point numbers. Truncate the results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure. (20 pts.)

✓	40B00000 + C2FA8000	✓ 10DAD000 - 90FAD000	✓ 7AB80000 × 81800000	✓ FA390000 ÷ 48400000
✓	42FA8000 + C0E00000	✓ 3DE38866 - B300D959	✓ FA09D300 × 4D080000	✓ FF800000 ÷ 09FE0090